
hwrt Documentation
Release 0.1.119

Martin Thoma

October 27, 2014

Contents

1 Installation 3
1.1 Debian-based systems . 3
1.2 Python packages . 3
1.3 Test installation . 4

2 Configuration 5
2.1 Example . 5

3 Handwritten Data 7

4 Preprocessing 9

5 Data Multiplication 11

6 Features 13

7 Create pfiles 15

8 Plugins 17
8.1 Preprocessing Classes . 17
8.2 Feature Classes . 17
8.3 Preprocessing Plugin Example . 17
8.4 Feature Plugin Example . 18

9 Development 19
9.1 Tools . 19

10 Download Raw Data 21

11 Analyze Data 23

12 View Data 25

13 Model Training 27

14 Record and Evaluate New Data 29

15 Model Testing 31

16 Backup from MySQL server 33

i

17 Indices and tables 35

Python Module Index 37

ii

hwrt Documentation, Release 0.1.119

hwrt is short for ‘handwriting recognition toolkit’. This toolkit allows you to download on-line handwritten mathe-
matical symbols, view them, analyze them and train and test models to classify them automatically. The toolset offers
many preprocessing algorithms and features that can be combined in many ways by YAML configuration files.

The theoretical part is covered in the bachelor’s thesis ‘On-line Handwriting Recognition of Mathematical Symbols’
from Martin Thoma. One part of this bachelor’s thesis was to create this toolkit and evaluate it.

All project source code and the source code of this documentation is at github.com/MartinThoma/hwrt. The experi-
ments are at github.com/MartinThoma/hwr-experiments.

If you want to talk about this toolkit, you can contact me (Martin Thoma) via email: info@martin-thoma.de

Contents:

Contents 1

https://github.com/MartinThoma/hwrt
https://github.com/MartinThoma/hwr-experiments
mailto:info@martin-thoma.de

hwrt Documentation, Release 0.1.119

2 Contents

CHAPTER 1

Installation

The hwrt toolkit can be installed via pip:

pip install hwrt

However, you might have to install some packages first for scipy.

1.1 Debian-based systems

Debian-based systems are Ubuntu, Linux Mint, and of course Debian. If you have such a Linux system, then the
following commands will help you to install the hwrt package.

For scipy, numpy and matplotlib you might need these packages:

apt-get install python-pip libblas-dev liblapack-dev gfortran
apt-get install python-scipy python-numpy
apt-get install libfreetype6-dev
apt-get install libgeos-dev

If you want to use MySQL functionality, you will need

apt-get install libmysqlclient-dev

1.2 Python packages

pip install MySQL-python

Now you can install the remaining packages:

pip install natsort matplotlib coveralls shapely
pip install numpy
pip install scipy

Now you can install pfile_utils. Some explanation of what they are can be found at my blog

As a last step, you can install hwrt:

pip install hwrt

3

http://www1.icsi.berkeley.edu/~dpwe/projects/sprach/sprachcore.html
http://martin-thoma.com/what-are-pfiles/

hwrt Documentation, Release 0.1.119

1.3 Test installation

You can check if it worked by

$ hwrt --version
hwrt 0.1.101

Please send me an email (info@martin-thoma.de) if that didn’t work.

1.3.1 First steps

First of all, you should download the raw data. This is done by executing download.py.

Next, you can view a simple example by view.py. For example, with view.py --list you can view all raw data
IDs of your current data. With view.py -i 291075 you can see how the preprocessing steps and the later data
multiplication steps influence the recording. If you didn’t execute view from a model folder and if you didn’t specify
another model with -m, you will get the output of the small baseline model that was created in your projects root folder
(~/hwr-experiments per default, but you can modify that with ~/.hwrtrc). That will show 3 rotated images
of 𝜋.

If you want to see more examples, have a look at https://github.com/MartinThoma/hwr-experiments

1.3.2 nntoolkit

In order to use hwrt completely (especially testing, training and record.py) you have to have an executable
nntoolkit that supports the following usages:

$ nntoolkit run --batch-size 1 -f%0.4f <test_file> < <model>

has to output the evaluation result in standard output as a list of floats separated by newlines \n+. The evaluation
result might either be the index of the neuron with highest activation or the list of probabilities of each class separated
by spaces.

$ nntoolkit make mlp <topology>

has to print the model in standard output.

The hwrt toolset is independent of the way the training command is formatted as the training command gets inserted
directly into the configuration file info.yml of the model.

In order to implement such a neural network executable one can use Theano, cuDNN or Caffe. Deeplearning contains
example code for multilayer perceptrons written with Theano (Python).

1.3.3 Upgrading hwrt

Upgrading hwrt to the latest version is much easier:

pip install hwrt --upgrade

4 Chapter 1. Installation

mailto:info@martin-thoma.de
https://github.com/MartinThoma/hwr-experiments
https://developer.nvidia.com/cuDNN
http://caffe.berkeleyvision.org/
http://www.deeplearning.net/tutorial/

CHAPTER 2

Configuration

The hwrt toolkit makes use of a configuration file. This file has to be in the home folder of the user an it has to be
called .hwrtrc.

The configuration file is in YAML format. The possible values are:

• root: This is a required configuration entry. Its value must be a path. hwrt will look for all configuration files
in this path.

• nntoolkit: The name of the executable in your path that does neural network training

• preprocessing: A path to a Python script that contains your preprocessing classes. Have a look at the
official preprocessing classes to see how they should be structured.

• features: Just like preprocessing, this has to be a path to a Python script.

There are 3 configurations that are probably only interesting for me:

• dbconfig: Only important if you want to access a MySQL db to get the data

• dropbox_app_key and dropbox_app_secret: Only important if you want to upload data to DropBox

2.1 Example

The following is an example ~/.hwrtrc configuration file:

root: /home/moose/GitHub/hwr-experiments
nntoolkit: nntoolkitfancyname
preprocessing: /home/moose/Desktop/preprocessing.py
features: /home/moose/Desktop/features.py
dbconfig: /home/moose/Downloads/write-math/tools/db.config.yml
dropbox_app_key: ’INSERT_APP_KEY’
dropbox_app_secret: ’INSERT_APP_SECRET’

5

https://github.com/MartinThoma/hwrt/blob/master/hwrt/preprocessing.py
https://github.com/MartinThoma/hwrt/blob/master/hwrt/preprocessing.py

hwrt Documentation, Release 0.1.119

6 Chapter 2. Configuration

CHAPTER 3

Handwritten Data

Representation of a recording of on-line handwritten data. On-line means that the pen trajectory is given (and not
online as in ‘Internet’).

class hwrt.HandwrittenData.HandwrittenData(raw_data_json, formula_id=None,
raw_data_id=None, formula_in_latex=None,
wild_point_count=0, missing_stroke=0,
user_id=0)

Represents a handwritten symbol.

count_single_dots()
Count all strokes of this recording that have only a single dot.

feature_extraction(algorithms)
Get a list of features.

Every algorithm has to return the features as a list.

get_area()
Get the area in square pixels of the recording.

get_bounding_box()
Get the bounding box of a pointlist.

get_center_of_mass()
Get a tuple (x,y) that is the center of mass. The center of mass is not necessarily the same as the center of
the bounding box. Imagine a black square and a single dot wide outside of the square.

get_height()
Get the height of the rectangular, axis-parallel bounding box.

get_pointlist()
Get a list of lists of tuples from JSON raw data string. Those lists represent strokes with control points.

Every point is a dictionary: {‘x’: 123, ‘y’: 42, ‘time’: 1337}

get_sorted_pointlist()
Make sure that the points and strokes are in order.

get_time()
Get the time in which the recording was created.

get_width()
Get the width of the rectangular, axis-parallel bounding box.

preprocessing(algorithms)
Apply preprocessing algorithms.

7

hwrt Documentation, Release 0.1.119

>>> a = HandwrittenData(...)
>>> preprocessing_queue = [(preprocessing.scale_and_shift, []), (preprocessing.connect_strokes, []), (preprocessing.douglas_peucker, {’EPSILON’: 0.2}), (preprocessing.space_evenly, {’number’: 100, ’KIND’: ’cubic’})]
>>> a.preprocessing(preprocessing_queue)

set_pointlist(pointlist)
Overwrite pointlist. :param pointlist: The inner lists represent strokes. Every stroke

consists of points. Every point is a dictinary with ‘x’, ‘y’, ‘time’.

show()
Show the data graphically in a new pop-up window.

8 Chapter 3. Handwritten Data

CHAPTER 4

Preprocessing

Preprocessing algorithms.

Each algorithm works on the HandwrittenData class. They have to be applied like this:

>>> a = HandwrittenData(...)
>>> preprocessing_queue = [ScaleAndShift(),

StrokeConnect(),
DouglasPeucker(epsilon=0.2),
SpaceEvenly(number=100)]

>>> a.preprocessing(preprocessing_queue)

class hwrt.preprocessing.DotReduction(threshold=5)
Reduce strokes where the maximum distance between points is below a threshold to a single dot.

class hwrt.preprocessing.DouglasPeucker(epsilon=0.2)
Apply the Douglas-Peucker stroke simplification algorithm separately to each stroke of the recording. The
algorithm has a threshold parameter epsilon that indicates how much the stroke is simplified. The smaller the
parameter, the closer will the resulting strokes be to the original.

class hwrt.preprocessing.RemoveDots
Remove all strokes that have only a single point (a dot) from the recording, except if the whole recording consists
of dots only.

class hwrt.preprocessing.RemoveDuplicateTime
If a recording has two points with the same timestamp, than the second point will be discarded. This is useful
for a couple of algorithms that don’t expect two points at the same time.

class hwrt.preprocessing.ScaleAndShift(center=False, max_width=1.0, max_height=1.0,
width_add=0, height_add=0, center_other=False)

Scale a recording so that it fits into a unit square. This keeps the aspect ratio. Then the recording is shifted. The
default way is to shift it so that the recording is in [0, 1] × [0,1]. However, it can also be used to be centered
within [-1, 1] × [-1, 1] around the origin (0, 0) by setting center=True and center_other=True.

class hwrt.preprocessing.SpaceEvenly(number=100, kind=’cubic’)
Space the points evenly in time over the complete recording. The parameter ‘number’ defines how many.

class hwrt.preprocessing.SpaceEvenlyPerStroke(number=100, kind=’cubic’)
Space the points evenly for every single stroke separately. The parameter number defines how many points are
used per stroke and the parameter kind defines which kind of interpolation is used. Possible values include cubic,
quadratic, linear, nearest. This part of the implementation relies on scipy.interpolate.interp1d.

class hwrt.preprocessing.StrokeConnect(minimum_distance=0.05)
StrokeConnect: Detect if strokes were probably accidentally disconnected. If that is the case, connect them.
This is detected by the threshold parameter minimum_distance. If the distance between the end point of a stroke
and the first point of the next stroke is below the minimum distance, the strokes will be connected.

9

hwrt Documentation, Release 0.1.119

class hwrt.preprocessing.WeightedAverageSmoothing(theta=None)
Smooth every stroke by a weighted average. This algorithm takes a list theta of 3 numbers that are the weights
used for smoothing.

class hwrt.preprocessing.WildPointFilter(threshold=3.0)
Find wild points and remove them. The threshold means speed in pixels / ms.

hwrt.preprocessing.get_class(name)
Get the class by its name as a string.

hwrt.preprocessing.get_preprocessing_queue(preprocessing_list)
Get preprocessing queue from a list of dictionaries

>>> l = [{’RemoveDuplicateTime’: None},
{’ScaleAndShift’: [{’center’: True}]}

]
>>> get_preprocessing_queue(l)
[RemoveDuplicateTime, ScaleAndShift
- center: True
- max_width: 1
- max_height: 1
]

10 Chapter 4. Preprocessing

CHAPTER 5

Data Multiplication

The automatic data multiplication works like this:

for algorithm in multiplication_queue:
new_training_set = []
for recording in training_set:

samples = algorithm(recording)
for sample in samples:

new_training_set.append(sample)
training_set = new_training_set

return new_training_set

Warning: The create_pfile procedure replaces the current set of recordings by the set returned by the data
multiplication steps.

Data multiplication algorithms.

Each algorithm works on the HandwrittenData class. They have to be applied like this:

>>> import data_multiplication as multiply
>>> a = HandwrittenData(...)
>>> multiplication_queue = [multiply.copy(10),

mulitply.rotate(-30, 30, 5)
]

>>> x = a.multiply(multiplication_queue)

class hwrt.data_multiplication.Multiply(nr=1)
Copy the data n times.

class hwrt.data_multiplication.Rotate(minimum=-30.0, maximum=30.0, num=5.0)
Add rotational variants of the recording.

hwrt.data_multiplication.get_class(name)
Get function pointer by string.

hwrt.data_multiplication.get_data_multiplication_queue(model_description_multiply)
Get features from a list of dictionaries

>>> l = [{’Multiply’: [{’nr’: 1}]}, {’Rotate’: [{’minimum’:-30}, {’maximum’: 30}, {’step’: 5}]}]
>>> get_data_multiplication_queue(l)
[Multiply (1 times), Rotate (-30.00, 30.00, 5.00)]

11

hwrt Documentation, Release 0.1.119

12 Chapter 5. Data Multiplication

CHAPTER 6

Features

Feature extraction algorithms.

Each algorithm works on the HandwrittenData class. They have to be applied like this:

>>> import features
>>> a = HandwrittenData(...)
>>> feature_list = [features.StrokeCount(),

features.ConstantPointCoordinates(strokes=4,
points_per_stroke=20,
fill_empty_with=0)

]
>>> x = a.feature_extraction(feature_list)

class hwrt.features.AspectRatio
Aspect ratio of a recording as a 1 dimensional feature.

class hwrt.features.Bitmap(n=28)
n × n grayscale bitmap of the recording.

class hwrt.features.CenterOfMass
Center of mass of a recording as a 2 dimensional feature.

class hwrt.features.ConstantPointCoordinates(strokes=4, points_per_stroke=20,
fill_empty_with=0, pen_down=True)

Take the first points_per_stroke=20 points coordinates of the first strokes=4 strokes as features. This leads
to 2 · 𝑒𝑥𝑡𝑝𝑜𝑖𝑛𝑡𝑠_𝑝𝑒𝑟_𝑠𝑡𝑟𝑜𝑘𝑒 · 𝑒𝑥𝑡𝑠𝑡𝑟𝑜𝑘𝑒𝑠 features.

If points is set to 0, the first points_per_stroke point coordinates and the

erb+pen_down+ feature is used. This leads to 3 · 𝑒𝑥𝑡𝑝𝑜𝑖𝑛𝑡𝑠𝑝𝑒𝑟𝑠𝑡𝑟𝑜𝑘𝑒 features.

class hwrt.features.FirstNPoints(n=81)
Similar to the ConstantPointCoordinates feature, this feature takes the first n=81 point coordinates. It also has
the fill_empty_with=0 to make sure that the dimension of this feature is always the same.

class hwrt.features.Height
Height of a recording as a a 1 dimensional feature.

Note: This is the current hight. So if the recording was scaled, this will not be the original height.

class hwrt.features.Ink
Ink as a 1 dimensional feature. It gives a numeric value for the amount of ink this would eventually have
consumed.

class hwrt.features.ReCurvature(strokes=4)

13

hwrt Documentation, Release 0.1.119

Re-curvature is a 1 dimensional, stroke-global feature for a recording. It is the ratio :math:‘

rac{ ext{height}(s)}{ ext{distance}(s[0], s[-1])}‘.

class hwrt.features.StrokeCenter(strokes=4)
Get the stroke center of mass coordinates as a 2 dimensional feature.

class hwrt.features.StrokeCount
Stroke count as a 1 dimensional recording.

class hwrt.features.StrokeIntersections(strokes=4)

Count the number of intersections which strokes in the recording have with each other in form of a sym-
metrical matrix for the first stroke=4 strokes. The feature dimension is :math:‘round

rac{ ext{strokes}^2}{2} + rac{ ext{strokes}}{2}‘,

because the symmetrical part is discarded.

•
stroke1 stroke2 stroke3

stroke1 0 1 0 ...
stroke2 1 2 0 ...
stroke3 0 0 0 ...

Returns values of upper triangular matrix (including diagonal) from left to right, top to bottom.

class hwrt.features.Time
The time in milliseconds it took to create the recording. This is a 1 dimensional feature.

get_dimension()
Get the dimension of the returned feature. This equals the number of elements in the returned list of
numbers.

class hwrt.features.Width
Width of a recording as a 1 dimensional feature.

Note: This is the current width. So if the recording was scaled, this will not be the original width.

hwrt.features.get_class(name)
Get function pointer by string.

hwrt.features.get_features(model_description_features)
Get features from a list of dictionaries

>>> l = [{’StrokeCount’: None}, {’ConstantPointCoordinates’: [{’strokes’: 4}, {’points_per_stroke’: 81}, {’fill_empty_with’: 0}, {’pen_down’: False}] }]
>>> get_features(l)
[StrokeCount, ConstantPointCoordinates
- strokes: 4
- points per stroke: 81
- fill empty with: 0
- pen down feature: False
]

14 Chapter 6. Features

CHAPTER 7

Create pfiles

Create pfiles.

Before this script is run, the download.py should get executed to generate a handwriting_datasets.pickle with exactly
those symbols that should also be present in the pfiles and only raw_data that might get used for the test-, validation-
and training set.

hwrt.create_pfiles.get_sets(path_to_data)
Get a training, validation and a testset as well as a dictionary that maps each formula_id to an index
(0...nr_of_formulas).

Parameters path_to_data – a pickle file that contains a list of datasets.

hwrt.create_pfiles.make_pfile(dataset_name, feature_count, data, output_filename, cre-
ate_learning_curve)

Create the pfile. :param filename: name of the file that pfile_create will use to create the

pfile.

Parameters

• feature_count (integer) – integer, number of features

• data (list of tuples) – data format (‘feature_string’, ‘label’)

hwrt.create_pfiles.prepare_dataset(dataset, formula_id2index, feature_list, is_traindata)
Transform each instance of dataset to a (Features, Label) tuple.

hwrt.create_pfiles.training_set_multiplication(training_set, mult_queue)
Multiply the training set by all methods listed in mult_queue. :param training_set: set of all recordings that will
be used for training :param mult_queue: list of all algorithms that will take one recording and

generate more than one.

Returns mutliple recordings

15

hwrt Documentation, Release 0.1.119

16 Chapter 7. Create pfiles

CHAPTER 8

Plugins

You eventually want to create your own preprocessing steps, your own features or another implementation of the same
feature. You can do so by specifying a Python script in preprocessing or features.

If a preprocessing class or a feature class exists in the official hwrt and in a plugin simultaniously, the hwrt implemen-
tation is used.

8.1 Preprocessing Classes

Every feature class must have a __str__, __repr__ and a __call__ function where

• __call__ must take exactly one argument of type HandwrittenData

• __call__ must call the Handwriting.set_points

8.2 Feature Classes

Every feature class must have a __str__, __repr__, __call__ and get_dimension function where

• __call__ must take exactly one argument of type HandwrittenData

• __call__ must return a list of length get_dimension()

• get_dimension must return a positive number

• have a ‘normalize’ attribute that is either true or false

8.3 Preprocessing Plugin Example

#!/usr/bin/env python

import hwrt.HandwrittenData as HandwrittenData

class Nullify(object):
def __repr__(self):

return "Nullify"

def __str__(self):

17

hwrt Documentation, Release 0.1.119

return "Nullify"

def __call__(self, handwritten_data):
assert isinstance(handwritten_data, HandwrittenData.HandwrittenData), \

"handwritten data is not of type HandwrittenData, but of %r" % \
type(handwritten_data)

pointlist = handwritten_data.get_pointlist()
new_pointlist = []
new_stroke = []
new_stroke.append({’x’: 0, ’y’: 0, ’time’: 0})
new_pointlist.append(new_stroke)
handwritten_data.set_pointlist(new_pointlist)

8.4 Feature Plugin Example

#!/usr/bin/env python

import hwrt.HandwrittenData as HandwrittenData

class StrokeCountTata(object):

"""Stroke count as a 1 dimensional recording."""

normalize = True

def __repr__(self):
return "StrokeCount"

def __str__(self):
return "stroke count"

def get_dimension(self):
return 1

def __call__(self, handwritten_data):
assert isinstance(handwritten_data, HandwrittenData.HandwrittenData), \

"handwritten data is not of type HandwrittenData, but of %r" % \
type(handwritten_data)

return [len(handwritten_data.get_pointlist())]

18 Chapter 8. Plugins

CHAPTER 9

Development

The hwrt toolkit is developed by Martin Thoma. The development began in May 2014.

It is developed on GitHub: https://github.com/MartinThoma/hwrt

You can file issues and feature requests there. Alternatively, you can send me an email: info@martin-thoma.de

9.1 Tools

• nosetests for unit testing

• pylint to find code smug

• GitHub for hosting the source code

• http://hwrt.readthedocs.org/ or https://pythonhosted.org/hwrt for hosting the documentation

Code coverage can be tested with

$ nosetests --with-coverage --cover-erase --cover-package hwrt --logging-level=INFO --cover-html

and uploaded to coveralls.io with

$ coveralls

Binaries:

19

https://github.com/MartinThoma/hwrt
mailto:info@martin-thoma.de
http://hwrt.readthedocs.org/
https://pythonhosted.org/hwrt

hwrt Documentation, Release 0.1.119

20 Chapter 9. Development

CHAPTER 10

Download Raw Data

This tool helps to get the initial raw data from the internet to your computer.

$ download.py --help
usage: download.py [-h]

Check if data files are here and which version they have. Contact the server
for the latest version and update them if they are outdated.

optional arguments:
-h, --help show this help message and exit

21

hwrt Documentation, Release 0.1.119

22 Chapter 10. Download Raw Data

CHAPTER 11

Analyze Data

This tool helps to analyze data by features.

$ analyze_data.py --help
usage: analyze_data.py [-h] [-d FILE]

Analyze data in a pickle file by maximum time / width / height and similar
features.

optional arguments:
-h, --help show this help message and exit
-d FILE, --handwriting_datasets FILE

where are the pickled handwriting_datasets? (default:
/home/moose/Downloads/write-math/archive/raw-
datasets/2014-08-26-20-14-handwriting_datasets-
raw.pickle)

23

hwrt Documentation, Release 0.1.119

24 Chapter 11. Analyze Data

CHAPTER 12

View Data

This tool lets you view a single recording. You can apply preprocessing steps by specifying a model folder.

$ view.py --help
usage: view.py [-h] [-i ID] [--mysql MYSQL] [-m FOLDER] [-l]

Display a raw_data_id.

optional arguments:
-h, --help show this help message and exit
-i ID, --id ID which RAW_DATA_ID do you want? (default: 279062)
--mysql MYSQL which mysql configuration should be used? (default:

mysql_online)
-m FOLDER, --model FOLDER

where is the model folder (with a info.yml)? (default:
/home/moose/GitHub/hwr-experiments/models/small-
baseline)

-l, --list list all raw data IDs / symbol IDs (default: False)

25

hwrt Documentation, Release 0.1.119

26 Chapter 12. View Data

CHAPTER 13

Model Training

This tool trains a model. This requires a KIT internal toolkit or your own implementation

$ train.py --help
usage: train.py [-h] [-m FOLDER]

Create and train a given model.

optional arguments:
-h, --help show this help message and exit
-m FOLDER, --model FOLDER

where is the model folder (with a info.yml)? (default:
/home/moose/Downloads/write-math/archive/models/small-
baseline)

27

hwrt Documentation, Release 0.1.119

28 Chapter 13. Model Training

CHAPTER 14

Record and Evaluate New Data

The hwrt toolkit contains a script record.py that allows a client to record and evaluate. The script uses the current
working directory as the recognition system. That means it uses the same preprocessing queue, the same features and
the latest model file of that folder. The script gets this information by examining the info.yml.

29

hwrt Documentation, Release 0.1.119

30 Chapter 14. Record and Evaluate New Data

CHAPTER 15

Model Testing

This tool calculates the error of a model according to different error measures.

The options -n and –merge should not be used together.

$ test.py --help
usage: test.py [-h] [-m FOLDER] [-s {test,train,valid}] [-n N] [--merge]

Get the error of a model. This tool supports multiple error measures.

optional arguments:
-h, --help show this help message and exit
-m FOLDER, --model FOLDER

where is the model folder (with the info.yml)?
(default: current folder)

-s {test,train,valid}, --set {test,train,valid}
which set should get analyzed? (default: test)

-n N Top-N error (default: 3)
--merge merge problem classes that are easy to confuse

(default: False)

31

hwrt Documentation, Release 0.1.119

32 Chapter 15. Model Testing

CHAPTER 16

Backup from MySQL server

This tool is only useful if you also have a write-math MySQL server running.

$ backup.py --help
usage: backup.py [-h] [-d FOLDER] [-s] [-o]

Download raw data from online server and back it up (e.g. on DropBox)
handwriting_datasets.pickle.

optional arguments:
-h, --help show this help message and exit
-d FOLDER, --destination FOLDER

where do write the handwriting_dataset.pickle
(default: /home/moose/Downloads/write-math/archive
/raw-datasets)

-s, --small should only a small dataset (with all capital letters)
be created? (default: False)

-o, --onlydropbox don’t download new files; only upload to DropBox
(default: False)

33

https://github.com/MartinThoma/write-math

hwrt Documentation, Release 0.1.119

34 Chapter 16. Backup from MySQL server

CHAPTER 17

Indices and tables

• genindex

• modindex

• search

35

hwrt Documentation, Release 0.1.119

36 Chapter 17. Indices and tables

Python Module Index

h
hwrt.create_pfiles, 15
hwrt.data_multiplication, 11
hwrt.features, 13
hwrt.HandwrittenData, 7
hwrt.preprocessing, 9

37

hwrt Documentation, Release 0.1.119

38 Python Module Index

Index

A
AspectRatio (class in hwrt.features), 13

B
Bitmap (class in hwrt.features), 13

C
CenterOfMass (class in hwrt.features), 13
ConstantPointCoordinates (class in hwrt.features), 13
count_single_dots() (hwrt.HandwrittenData.HandwrittenData

method), 7

D
DotReduction (class in hwrt.preprocessing), 9
DouglasPeucker (class in hwrt.preprocessing), 9

F
feature_extraction() (hwrt.HandwrittenData.HandwrittenData

method), 7
FirstNPoints (class in hwrt.features), 13

G
get_area() (hwrt.HandwrittenData.HandwrittenData

method), 7
get_bounding_box() (hwrt.HandwrittenData.HandwrittenData

method), 7
get_center_of_mass() (hwrt.HandwrittenData.HandwrittenData

method), 7
get_class() (in module hwrt.data_multiplication), 11
get_class() (in module hwrt.features), 14
get_class() (in module hwrt.preprocessing), 10
get_data_multiplication_queue() (in module

hwrt.data_multiplication), 11
get_dimension() (hwrt.features.Time method), 14
get_features() (in module hwrt.features), 14
get_height() (hwrt.HandwrittenData.HandwrittenData

method), 7
get_pointlist() (hwrt.HandwrittenData.HandwrittenData

method), 7

get_preprocessing_queue() (in module
hwrt.preprocessing), 10

get_sets() (in module hwrt.create_pfiles), 15
get_sorted_pointlist() (hwrt.HandwrittenData.HandwrittenData

method), 7
get_time() (hwrt.HandwrittenData.HandwrittenData

method), 7
get_width() (hwrt.HandwrittenData.HandwrittenData

method), 7

H
HandwrittenData (class in hwrt.HandwrittenData), 7
Height (class in hwrt.features), 13
hwrt.create_pfiles (module), 15
hwrt.data_multiplication (module), 11
hwrt.features (module), 13
hwrt.HandwrittenData (module), 7
hwrt.preprocessing (module), 9

I
Ink (class in hwrt.features), 13

M
make_pfile() (in module hwrt.create_pfiles), 15
Multiply (class in hwrt.data_multiplication), 11

P
prepare_dataset() (in module hwrt.create_pfiles), 15
preprocessing() (hwrt.HandwrittenData.HandwrittenData

method), 7

R
ReCurvature (class in hwrt.features), 13
RemoveDots (class in hwrt.preprocessing), 9
RemoveDuplicateTime (class in hwrt.preprocessing), 9
Rotate (class in hwrt.data_multiplication), 11

S
ScaleAndShift (class in hwrt.preprocessing), 9

39

hwrt Documentation, Release 0.1.119

set_pointlist() (hwrt.HandwrittenData.HandwrittenData
method), 8

show() (hwrt.HandwrittenData.HandwrittenData
method), 8

SpaceEvenly (class in hwrt.preprocessing), 9
SpaceEvenlyPerStroke (class in hwrt.preprocessing), 9
StrokeCenter (class in hwrt.features), 14
StrokeConnect (class in hwrt.preprocessing), 9
StrokeCount (class in hwrt.features), 14
StrokeIntersections (class in hwrt.features), 14

T
Time (class in hwrt.features), 14
training_set_multiplication() (in module

hwrt.create_pfiles), 15

W
WeightedAverageSmoothing (class in

hwrt.preprocessing), 10
Width (class in hwrt.features), 14
WildPointFilter (class in hwrt.preprocessing), 10

40 Index

	Installation
	Debian-based systems
	Python packages
	Test installation

	Configuration
	Example

	Handwritten Data
	Preprocessing
	Data Multiplication
	Features
	Create pfiles
	Plugins
	Preprocessing Classes
	Feature Classes
	Preprocessing Plugin Example
	Feature Plugin Example

	Development
	Tools

	Download Raw Data
	Analyze Data
	View Data
	Model Training
	Record and Evaluate New Data
	Model Testing
	Backup from MySQL server
	Indices and tables
	Python Module Index

