

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	hwrt 0.1.119 documentation

hwrt documentation

hwrt is short for ‘handwriting recognition toolkit’. This toolkit allows you
to download on-line handwritten mathematical symbols, view them, analyze them
and train and test models to classify them automatically. The toolset offers
many preprocessing algorithms and features that can be combined in many ways
by YAML configuration files.

The theoretical part is covered in the bachelor’s thesis ‘On-line Handwriting
Recognition of Mathematical Symbols’ from Martin Thoma. One part of this
bachelor’s thesis was to create this toolkit and evaluate it.

All project source code and the source code of this documentation is at
github.com/MartinThoma/hwrt [https://github.com/MartinThoma/hwrt].
The experiments are at
github.com/MartinThoma/hwr-experiments [https://github.com/MartinThoma/hwr-experiments].

If you want to talk about this toolkit, you can contact me (Martin Thoma)
via email: info@martin-thoma.de

Contents:

	Installation
	Debian-based systems

	Python packages

	Test installation

	Configuration
	Example

	Handwritten Data

	Preprocessing

	Data Multiplication

	Features

	Create pfiles

	Plugins
	Preprocessing Classes

	Feature Classes

	Preprocessing Plugin Example

	Feature Plugin Example

	Development
	Tools

	Documentation

	Project structure

	Current State

Binaries:

	Download Raw Data

	Analyze Data
	General usage

	Plug-in System

	Default metrics

	View Data

	Model Training

	Record and Evaluate New Data

	Model Testing

	Backup from MySQL server

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Martin Thoma.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	hwrt 0.1.119 documentation

Installation

The hwrt toolkit can be installed via pip:

pip install hwrt

However, you might have to install some packages first for scipy.

Debian-based systems

Debian-based systems are Ubuntu, Linux Mint, and of course Debian. If you have
such a Linux system, then the following commands will help you to install the
hwrt package.

For scipy, numpy and matplotlib you might need these packages:

apt-get install python-pip libblas-dev liblapack-dev gfortran
apt-get install python-scipy python-numpy
apt-get install libfreetype6-dev
apt-get install libgeos-dev

If you want to use MySQL functionality, you will need

apt-get install libmysqlclient-dev

If you want to use bitmap features, you have to install pillow [http://python-pillow.github.io/]. This might
include installing the following:

apt-get install python-dev python-setuptools
apt-get install python3-dev python3-setuptools
apt-get install libtiff4-dev libjpeg8-dev zlib1g-dev libfreetype6-dev liblcms1-dev libwebp-dev

Python packages

pip install pymysql

Now you can install the remaining packages:

pip install PILLOW
pip install natsort matplotlib coveralls
pip install numpy
pip install scipy

Now you can install pfile_utils [http://www1.icsi.berkeley.edu/~dpwe/projects/sprach/sprachcore.html]. Some explanation of what they
are can be found at my blog [http://martin-thoma.com/what-are-pfiles/]

As a last step, you can install hwrt:

pip install hwrt

Test installation

You can check if it worked by

$ hwrt --version
hwrt 0.1.190

Please send me an email (info@martin-thoma.de) if that didn’t work.

First steps as a developer

First of all, you should download the raw data. This is done by executing
download.py.

Next, you can view a simple example by view.py. For example, with
view.py --list you can view all raw data IDs of your current data.
With view.py -i 291075 you can see how the preprocessing steps and the
later data multiplication steps influence the recording. If you didn’t execute
view from a model folder and if you didn’t specify another model with -m,
you will get the output of the small baseline model that was created in your
projects root folder (~/hwr-experiments per default, but you can modify that
with ~/.hwrtrc). That will show 3 rotated images of \(\pi\).

If you want to see more examples, have a look at
https://github.com/MartinThoma/hwr-experiments

First steps as a user

The command

$ hwrt record

will open a window. You can draw a symbol there:

[image: Record what you want to draw]
Close the window when you’re ready. The classification result will be shown in
the terminal.

Alternatively, you can start

$ hwrt serve

and go to http://127.0.0.1:5000/interactive to see

[image: Browser interface]

nntoolkit

In order to use hwrt completely (especially testing, training and record.py)
you have to have an executable nntoolkit that supports the following usages:

$ nntoolkit run --batch-size 1 -f%0.4f <test_file> < <model>

has to output the evaluation result in standard output as a list of floats
separated by newlines \n+. The evaluation result might either be the
index of the neuron with highest activation or the list of probabilities
of each class separated by spaces.

$ nntoolkit make mlp <topology>

has to print the model in standard output.

The hwrt toolset is independent of the way the training command is
formatted as the training command gets inserted directly into the configuration
file info.yml of the model.

In order to implement such a neural network executable one can use Theano,
cuDNN [https://developer.nvidia.com/cuDNN] or Caffe [http://caffe.berkeleyvision.org/]. Deeplearning [http://www.deeplearning.net/tutorial/] contains example code for multilayer perceptrons
written with Theano (Python).

Upgrading hwrt

Upgrading hwrt to the latest version is much easier:

pip install hwrt --upgrade

 Copyright 2014, Martin Thoma.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	hwrt 0.1.119 documentation

Configuration

The hwrt toolkit makes use of a configuration file. This file has to be
in the home folder of the user an it has to be called .hwrtrc.

The configuration file is in YAML format. The possible values are:

	root: This is a required configuration entry. Its value must be a path.
hwrt will look for all configuration files in this path.

	nntoolkit: The name of the executable in your path that does neural
network training

	preprocessing: A path to a Python script that contains your preprocessing
classes. Have a look at the official preprocessing classes [https://github.com/MartinThoma/hwrt/blob/master/hwrt/preprocessing.py]
to see how they should be structured.

	features: Just like preprocessing, this has to be a path to a Python
script.

There are 3 configurations that are probably only interesting for me:

	dbconfig: Only important if you want to access a MySQL db to get the data

	dropbox_app_key and dropbox_app_secret: Only important if you want
to upload data to DropBox

Example

The following is an example ~/.hwrtrc configuration file:

root: /home/moose/GitHub/hwr-experiments
nntoolkit: nntoolkitfancyname
preprocessing: /home/moose/hwrt-config/preprocessing.py
features: /home/moose/hwrt-config/features.py
dbconfig: /home/moose/hwrt-config/db.config.yml
dropbox_app_key: 'INSERT_APP_KEY'
dropbox_app_secret: 'INSERT_APP_SECRET'

 Copyright 2014, Martin Thoma.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	hwrt 0.1.119 documentation

Handwritten Data

Representation of a recording of on-line handwritten data. On-line means
that the pen trajectory is given (and not online as in ‘Internet’).

	
class hwrt.HandwrittenData.HandwrittenData(raw_data_json, formula_id=None, raw_data_id=None, formula_in_latex=None, wild_point_count=0, missing_stroke=0, user_id=0)

	Represents a handwritten symbol.

	
count_single_dots()

	Count all strokes of this recording that have only a single dot.

	
feature_extraction(algorithms)

	Get a list of features.

Every algorithm has to return the features as a list.

	
get_area()

	Get the area in square pixels of the recording.

	
get_bounding_box()

	Get the bounding box of a pointlist.

	
get_center_of_mass()

	Get a tuple (x,y) that is the center of mass. The center of mass
is not necessarily the same as the center of the bounding box.
Imagine a black square and a single dot wide outside of the square.

	
get_height()

	Get the height of the rectangular, axis-parallel bounding box.

	
get_pointlist()

	Get a list of lists of tuples from JSON raw data string.
Those lists represent strokes with control points.

Every point is a dictionary:
{‘x’: 123, ‘y’: 42, ‘time’: 1337}

	
get_sorted_pointlist()

	Make sure that the points and strokes are in order.

	
get_time()

	Get the time in which the recording was created.

	
get_width()

	Get the width of the rectangular, axis-parallel bounding box.

	
preprocessing(algorithms)

	Apply preprocessing algorithms.

>>> a = HandwrittenData(...)
>>> preprocessing_queue = [(preprocessing.scale_and_shift, []), (preprocessing.connect_strokes, []), (preprocessing.douglas_peucker, {'EPSILON': 0.2}), (preprocessing.space_evenly, {'number': 100, 'KIND': 'cubic'})]
>>> a.preprocessing(preprocessing_queue)

	
set_pointlist(pointlist)

	Overwrite pointlist.
:param pointlist: The inner lists represent strokes. Every stroke

consists of points. Every point is a dictinary with ‘x’, ‘y’,
‘time’.

	
show()

	Show the data graphically in a new pop-up window.

 Copyright 2014, Martin Thoma.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	hwrt 0.1.119 documentation

Preprocessing

[image: Dot reduction]
Dot reduction

[image: Stroke connect]
Stroke connect

[image: Resampling]
Resampling

[image: scale and shift]
Scale and shift

[image: smoothing (Weights: 1:1:1)]
Smoothing

[image: Effect of a wild point on scale and shift]
Effect of a wild point on scale and shift

 Copyright 2014, Martin Thoma.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	hwrt 0.1.119 documentation

Data Multiplication

The automatic data multiplication works like this:

for algorithm in multiplication_queue:
 new_training_set = []
 for recording in training_set:
 samples = algorithm(recording)
 for sample in samples:
 new_training_set.append(sample)
 training_set = new_training_set
return new_training_set

Warning

The create_pfile procedure replaces the current set of recordings by the
set returned by the data multiplication steps.

[image: Recording rotated by -30, 0, +30 degrees]

 Copyright 2014, Martin Thoma.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	hwrt 0.1.119 documentation

Features

 Copyright 2014, Martin Thoma.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	hwrt 0.1.119 documentation

Create pfiles

 Copyright 2014, Martin Thoma.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	hwrt 0.1.119 documentation

Plugins

You eventually want to create your own preprocessing steps, your own
features or another implementation of the same feature. You can do so by
specifying a Python script in preprocessing or features.

If a preprocessing class or a feature class exists in the official hwrt and
in a plugin simultaniously, the hwrt implementation is used.

Preprocessing Classes

Every feature class must have a __str__, __repr__ and a __call__
function where

	__call__ must take exactly one argument of type HandwrittenData

	__call__ must call the Handwriting.set_points

Feature Classes

Every feature class must have a __str__, __repr__, __call__ and
get_dimension function where

	__call__ must take exactly one argument of type HandwrittenData

	__call__ must return a list of length get_dimension()

	get_dimension must return a positive number

	have a ‘normalize’ attribute that is either true or false

Preprocessing Plugin Example

#!/usr/bin/env python
-*- coding: utf-8 -*-

import hwrt.HandwrittenData as HandwrittenData

class Nullify(object):
 def __repr__(self):
 return "Nullify"

 def __str__(self):
 return "Nullify"

 def __call__(self, handwritten_data):
 assert isinstance(handwritten_data, HandwrittenData.HandwrittenData), \
 "handwritten data is not of type HandwrittenData, but of %r" % \
 type(handwritten_data)
 # pointlist = handwritten_data.get_pointlist()
 new_pointlist = []
 new_stroke = []
 new_stroke.append({'x': 0, 'y': 0, 'time': 0})
 new_pointlist.append(new_stroke)
 handwritten_data.set_pointlist(new_pointlist)

Feature Plugin Example

#!/usr/bin/env python
-*- coding: utf-8 -*-

import hwrt.HandwrittenData as HandwrittenData

class StrokeCountTata(object):

 """Stroke count as a 1 dimensional recording."""

 normalize = True

 def __repr__(self):
 return "StrokeCount"

 def __str__(self):
 return "stroke count"

 def get_dimension(self):
 return 1

 def __call__(self, handwritten_data):
 assert isinstance(handwritten_data, HandwrittenData.HandwrittenData), \
 "handwritten data is not of type HandwrittenData, but of %r" % \
 type(handwritten_data)
 return [len(handwritten_data.get_pointlist())]

 Copyright 2014, Martin Thoma.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	hwrt 0.1.119 documentation

Development

The hwrt toolkit is developed by Martin Thoma. The development began in
May 2014.

It is developed on GitHub: https://github.com/MartinThoma/hwrt

You can file issues and feature requests there. Alternatively, you can send
me an email: info@martin-thoma.de

Tools

	nosetests for unit testing

	pylint to find code smug

	GitHub for hosting the source code

	http://hwrt.readthedocs.org/ or https://pythonhosted.org/hwrt for hosting the documentation

Code coverage can be tested with

$ nosetests --with-coverage --cover-erase --cover-package hwrt --logging-level=INFO --cover-html

and uploaded to coveralls.io with

$ coveralls

Documentation

The documentation is generated with Sphinx [http://sphinx-doc.org/latest/index.html].
On Debian derivates it can be installed with

$ sudo apt-get install python-sphinx

Sphinx makes use of reStructured Text [http://openalea.gforge.inria.fr/doc/openalea/doc/_build/html/source/sphinx/rest_syntax.html]

The documentation can be built with make html.

Project structure

The project structure is

.
├── bin
├── docs
├── hwrt
│ ├── misc
│ └── templates
└── tests
 └── symbols

where the folder bin contains all scripts that can directly be used,
hwrt contains all modules and tests contains unittests written with
nosetools.

The symbols subfolder contains JSON files of recordings that are used for
testing.

Current State

	lines of code without tests: LOC

	lines of test code: LOT

	test coverage: cov

	pylint score: lint

date, LOC, LOT, cov, lint, cheesecake_index, users, changes
2014-11-16, 3361, 936, 72%, 9.70, 314/595, 1
2014-11-17, 3332, 965, 72%, 9.70, 314/595, 1, moved 'view.py' to subcommand 'hwrt view'
2014-11-18, 3325, 988, 71%, 9.71, 314/595, 1, moved 'download.py' to subcommand 'hwrt download'
2014-11-19, 3312, 988, 72%, 9.71, 314/595, 1, refactoring
2014-11-20, 3281, 1001, 72%, 9.78, 314/595, 1, refactoring (logging); added test case for create_pfiles
2014-11-21, 3274, 1001, 72%, 9.78, 314/595, 1, refactoring (temporary file)
2014-11-22, 3282, 1001, 72%, 9.82, 315/595, 1, refactoring (temporary file for evaluation, fixed issue #7)
2014-11-23, 3279, 1043, 72%, 9.83, 315/595, 1, moved 'analyze_data.py' to subcommand 'hwrt analyze_data'; refactoring (analyze_data.py)
2014-11-24, 3286, 1069, 73%, 9.83, 315/595, 1, hwrt/utils.py: refactoring (tempfile; splitted long function)
2014-11-25, 3445, 1070, 73%, 9.80, 314/595, 1, hwrt/data_analyzation_metrics.py: added AnalyzeErrors
2014-11-26, 3455, 1136, 74%, 9.81, 315/595, 1, hwrt/create_pfiles.py: refactoring, normalization can get activated
2014-11-27, 3450, 1140, 75%, 9.82, 315/595, 1, hwrt/view.py: refactoring; added test
2014-11-28, 3443, 1149, 75%, 9.82, 315/595, 1, hwrt/data_analyzation_metrics.py: refactoring to simplify code; added images of rotated recording
2014-11-29, 3448, 1147, 76%, 9.82, 315/595, 1, bin/test.py: refactored to use temporary file
2014-11-30, 3464, 1165, 76%, 9.82, 315/595, 1, hwrt/create_pfiles.py: refactoring for easier testing
2014-12-01, 3488, 1165, 76%, 9.82, 315/595, 1, bin/recordflask.py: Added web server draft
2014-12-02, 3507, 1165, 76%, 9.82, 315/595, 1, bin/recordflask.py: Updated web server
2014-12-03, 3525, 1165, 76%, 9.78, 316/595, 1, hwrt/utils.py: check configuration file for nntoolkit; formulas can now be recorded and evaluated without non-free software :-)
2014-12-04, 3640, 1165, 76%, 9.75, 315/595, 1, hwrt/record.py and hwrt/serve.py: Improved recognizer; added model file to project
2014-12-05, 3669, 1191, 76%, 9.79, 316/595, 1, updated code to work with Python 3

 Copyright 2014, Martin Thoma.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	hwrt 0.1.119 documentation

Download Raw Data

This tool helps to get the initial raw data from the internet to your computer.

$ download.py --help
usage: download.py [-h]

Check if data files are here and which version they have. Contact the server
for the latest version and update them if they are outdated.

optional arguments:
 -h, --help show this help message and exit

 Copyright 2014, Martin Thoma.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	hwrt 0.1.119 documentation

Analyze Data

This tool helps to analyze data by features.

General usage

$ hwrt analyze_data --help
usage: hwrt analyze_data [-h] [-d FILE] [-f]

optional arguments:
 -h, --help show this help message and exit
 -d FILE, --handwriting_datasets FILE
 where are the pickled handwriting_datasets?
 -f, --features analyze features

Plug-in System

It can be extended by a plugin system. To do so, the configuration file
~/.hwrtrc has to be edited. The following two entries are important:

data_analyzation_plugins: /home/moose/Desktop/da.py
data_analyzation_queue:
 - TrainingCount:
 - filename: trainingcount.csv
 - Creator: null

The value of data_analyzation_plugins indicates where the file with
self-written data analyzation classes is located. Could could looke like this:

#!/usr/bin/env python
-*- coding: utf-8 -*-

import time
from collections import defaultdict

hwrt modules
from hwrt import HandwrittenData
from hwrt import utils
from hwrt import data_analyzation_metrics
from hwrt import geometry

class TrainingCount(object):
 """Analyze how many training examples exist for each recording."""

 def __init__(self, filename="creator.csv"):
 self.filename = data_analyzation_metrics.prepare_file(filename)

 def __repr__(self):
 return "TrainingCount(%s)" % self.filename

 def __str__(self):
 return "TrainingCount(%s)" % self.filename

 def __call__(self, raw_datasets):
 write_file = open(self.filename, "a")
 write_file.write("symbol,trainingcount\n") # heading

 print_data = defaultdict(int)
 start_time = time.time()
 for i, raw_dataset in enumerate(raw_datasets):
 if i % 100 == 0 and i > 0:
 utils.print_status(len(raw_datasets), i, start_time)
 print_data[raw_dataset['handwriting'].formula_in_latex] += 1
 print("\r100%"+"\033[K\n")
 # Sort the data by highest value, descending
 print_data = sorted(print_data.items(),
 key=lambda n: n[1],
 reverse=True)
 # Write data to file
 write_file.write("total,%i\n" %
 sum([value for _, value in print_data]))
 for userid, value in print_data:
 write_file.write("%s,%i\n" % (userid, value))
 write_file.close()

Default metrics

There are also many ready-to-use metrics:

 Copyright 2014, Martin Thoma.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	hwrt 0.1.119 documentation

View Data

This tool lets you view a single recording. You can apply preprocessing
steps by specifying a model folder.

$ hwrt view --help
usage: hwrt view [-h] [-i ID] [--mysql MYSQL] [-m FOLDER] [-l] [-s] [-r]

optional arguments:
 -h, --help show this help message and exit
 -i ID, --id ID which RAW_DATA_ID do you want?
 --mysql MYSQL which mysql configuration should be used?
 -m FOLDER, --model FOLDER
 where is the model folder (with a info.yml)?
 -l, --list list all raw data IDs / symbol IDs
 -s, --server contact the MySQL server
 -r, --raw show the raw recording (without preprocessing)

The following image shows how hwrt view displays an image. The different
colors correspond to different strokes.

[image: Recording as showed by ``hwrt view``]

 Copyright 2014, Martin Thoma.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	hwrt 0.1.119 documentation

Model Training

This tool trains a model. This requires a KIT internal toolkit or your
own implementation

$ train.py --help
usage: train.py [-h] [-m FOLDER]

Create and train a given model.

optional arguments:
 -h, --help show this help message and exit
 -m FOLDER, --model FOLDER
 where is the model folder (with a info.yml)? (default:
 /home/moose/GitHub/hwr-experiments/models
 /visualization-smooth-only)

 Copyright 2014, Martin Thoma.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	hwrt 0.1.119 documentation

Record and Evaluate New Data

The hwrt toolkit contains a script record.py that allows a client to record
and evaluate. The script uses the current working directory as the recognition
system. That means it uses the same preprocessing queue, the same features and
the latest model file of that folder. The script gets this information by
examining the info.yml.

 Copyright 2014, Martin Thoma.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	hwrt 0.1.119 documentation

Model Testing

This tool calculates the error of a model according to different error
measures.

The options -n and –merge should not be used together.

$ test.py --help
usage: test.py [-h] [-m FOLDER] [-s {test,train,valid}] [-n N] [--merge]

Get the error of a model. This tool supports multiple error measures.

optional arguments:
 -h, --help show this help message and exit
 -m FOLDER, --model FOLDER
 where is the model folder (with the info.yml)?
 (default: current folder)
 -s {test,train,valid}, --set {test,train,valid}
 which set should get analyzed? (default: test)
 -n N Top-N error (default: 3)
 --merge merge problem classes that are easy to confuse
 (default: False)

 Copyright 2014, Martin Thoma.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	hwrt 0.1.119 documentation

Backup from MySQL server

This tool is only useful if you also have a write-math [https://github.com/MartinThoma/write-math]
MySQL server running.

$ backup.py --help
usage: backup.py [-h] [-d FOLDER] [-s] [-o]

Download raw data from online server and back it up (e.g. on DropBox)
handwriting_datasets.pickle.

optional arguments:
 -h, --help show this help message and exit
 -d FOLDER, --destination FOLDER
 where do write the handwriting_dataset.pickle
 (default: /home/moose/Downloads/write-math/archive
 /raw-datasets)
 -s, --small should only a small dataset (with all capital letters)
 be created? (default: False)
 -o, --onlydropbox don't download new files; only upload to DropBox
 (default: False)

 Copyright 2014, Martin Thoma.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	hwrt 0.1.119 documentation

 Python Module Index

 h

 			

 		
 h	

 	[image: -]
 	
 hwrt	

 	
 	
 hwrt.HandwrittenData	

 Copyright 2014, Martin Thoma.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	hwrt 0.1.119 documentation

Index

 C
 | F
 | G
 | H
 | P
 | S

C

 	

 	count_single_dots() (hwrt.HandwrittenData.HandwrittenData method)

F

 	

 	feature_extraction() (hwrt.HandwrittenData.HandwrittenData method)

G

 	

 	get_area() (hwrt.HandwrittenData.HandwrittenData method)

 	get_bounding_box() (hwrt.HandwrittenData.HandwrittenData method)

 	get_center_of_mass() (hwrt.HandwrittenData.HandwrittenData method)

 	get_height() (hwrt.HandwrittenData.HandwrittenData method)

 	

 	get_pointlist() (hwrt.HandwrittenData.HandwrittenData method)

 	get_sorted_pointlist() (hwrt.HandwrittenData.HandwrittenData method)

 	get_time() (hwrt.HandwrittenData.HandwrittenData method)

 	get_width() (hwrt.HandwrittenData.HandwrittenData method)

H

 	

 	HandwrittenData (class in hwrt.HandwrittenData)

 	

 	hwrt.HandwrittenData (module)

P

 	

 	preprocessing() (hwrt.HandwrittenData.HandwrittenData method)

S

 	

 	set_pointlist() (hwrt.HandwrittenData.HandwrittenData method)

 	

 	show() (hwrt.HandwrittenData.HandwrittenData method)

 Copyright 2014, Martin Thoma.
 Created using Sphinx 1.2.2.

 _static/down.png

_static/comment-close.png

search.html

 Navigation

 		
 index

 		
 modules |

 		hwrt 0.1.119 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Martin Thoma.
 Created using Sphinx 1.2.2.

_images/wildpoint-2.png

_static/up-pressed.png

_static/down-pressed.png

_images/smooth-1-1-1.png
F}EKI data id: 1394

250
260 260
270 270
280 280
290 290

309, 309,
285 290 295 300 305 310 315 285 290 295 300 305 310 315

_images/scale-and-shift.png
F}EKI data id: 1394

0.0
260 02
270 04
280 06
290 08

309, 10
285 290 295 300 305 310 31f -03 02 0.1 00 01 02 03

_images/record-window.png
propto
arpropto
Ltines

¥ master @ il

_images/resampling.png
F}EKI data id: 1394

0.0
260 02
270 04
280 06
290 08

309, 10
285 290 295 300 305 310 31 -03 —02 —0.1 0.0 01 02 0.

_images/dot-reduction.png
L RN g

_images/interrupted-stroke.png
0.0

02

04

06

08

%,

Raw data id: 12647, LaTeX: §

02

04

06

038

Lo

_static/minus.png

_static/comment.png

_static/comment-bright.png

_images/classify.png
Classify

3. Get the classification

. LaTeX Code Prob

1. Write the symbol [T O Trr R T ———
\alpha 60.7480%
\propto 37.8782%
\varpropto 1.1017%
\prec 0.0505%
\ltimes 0.0155%
\mathcal{L} 0601315
\preceq 0.0091%
\preccurlyeq 0.0076%
\bot 0.0063%
\signa 0.0031%
S e SR

R back

2. Click on 'Submit'

[suomi | oo |

_static/file.png

_static/ajax-loader.gif

_static/plus.png

_static/up.png

